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Abstract
A (2+1)-dimensional derivative Toda equation is derived from the Lax triad
composed of the Kaup–Newell, the negative Kaup–Newell and a discrete
spectral problem. Two integrable Hamiltonian systems and an integrable
symplectic map are derived from the Lax triad. They are straightened out in the
Jacobi variety of the associated hyperelliptic curve. A finite genus solution is
obtained through a technique based on the Riemann–Jacobi inversion theorem.
Besides, explicit solutions are calculated for other associated integrable models,
including the mKP equation and the nKN equation.

PACS numbers: 02.30.Jr, 02.30.Ik, 04.20.Jb

1. Introduction

In the present paper, finite genus solutions [1, 2] of integrable equations associated with
the Kaup–Newell spectral problem (KN) [3] are investigated, with special emphasis on the
(2+1)-dimensional derivative Toda equation (dToda):

∂2ϕn

∂x∂y
+ (eϕn+1−ϕn − eϕn−ϕn−1)

∂ϕn

∂x
= 0, (1.1)

similar to the traditional (2+1) Toda equation [4]: ϕn,xy = eϕn+1−ϕn − eϕn−ϕn−1 , but with
different integrable structure. Equation (1.1) is derived from the Lax triad composed of the
Kaup–Newell, the negative Kaup–Newell (nKN) and a discrete eigenvalue problem:

∂xχ = V1χ, V1 =
(

λ2/2 uλ

vλ −λ2/2

)
, (1.2)

∂yχ = V−1χ, V−1 =
(−λ−2/2 + rs −rλ−1

−sλ−1 λ−2/2 − rs

)
, (1.3)
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Eχ = Uχ, U =
(

0 −a−1

a −bλ − λ−1

)
, (1.4)

where ∂x = ∂/∂x and E is the shift operator: (Ef )(n) = f (n + 1), (E−f )(n) = f (n − 1) for
the scalar-valued function f and Eχ = E(χ1, χ2)T = (Eχ1, Eχ2)T for the vector-valued
function χ .

Each spectral problem has independent interest. Other integrable partial differential
equations are derived from them. For example, the first isospectral equation for KN is the
derivative nonlinear Schrödinger equation [3–6], while that for nKN reads (see proposition
2.3–4 below) {

rτ−2 = −ryy + 2r2sy + 2r3s2,

sτ−2 = +syy + 2s2ry − 2r2s3.
(1.5)

It is well known that the Kadomtsev–Petviashvili equation (KP) can be derived from the first
two ZS-AKNS equations as a compatible condition [7, 8]. Similarly, both KN and nKN yield
the same mKP equation [9–13], though in different arguments (see propositions 2.2 and 2.4
below):

wτ3 = 1
4 (wxx − 2w3)x + 3

4∂−1
x wτ2τ2 − 3

2wx∂
−1
x wτ2 , (1.6)

w̃τ−3 = 1
4 (w̃yy − 2w̃3)y + 3

4∂−1
y w̃τ−2τ−2 − 3

2 w̃y∂
−1
y w̃τ−2 . (1.7)

In 1978, Moser first used the generating function in the study of integrable reduction of the
KdV equation to a mechanical problem of Neumann [14, 15]. A powerful tool, the Lax–Moser
matrix, is developed from his method to calculate the explicit solution for the KP equation [16]
and some other (2+1)-dimensional integrable models containing both continuous and discrete
arguments [17–19].

The Lax–Moser matrix (see equation (3.1) below) is obtained through the nonlinearization
of the KN spectral problem. It determines two objects: (i) the integrals {Hk}, which are
the coefficients in the power series expansions of the square root of its determinant (see
equation (3.7) below); (ii) the algebraic curve �, whose affine equation coincides with the
characteristic equation of the Lax–Moser matrix up to a polynomial factor (see equation (3.16)
below).

It turns out that the canonical equations for the Hamiltonian H1,H−1 are exactly the
KN and the nKN equations (1.2) and (1.3) under the Bargmanns constraint (u, v) =
f +(p, q), (r, s) = f −(p, q), given by equations (3.12) and (3.14), respectively. On the
other hand, equation (1.4) becomes an integrable symplectic map S under another constraint
(a, b) = fS(p, q), given by equation (4.2), sharing the same integrals.

Finite genus solutions are obtained in three steps.

(i) Decomposition. Special solution of PDE is reduced into compatible solution of ODEs as

(2 + 1) d Toda(1.1): (H1), (H−1), S; (1.8)

nKN(1.5): (H−1), (H−2); (1.9)

mKP(1.6): (H1), (H2), (H3); (1.10)

mKP(1.7): (H−1), (H−2), (H−3). (1.11)
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(ii) Straightening out. The flows generated by Hk,H−k and S are linearized in the Jacobi
variety of � with constant evolution speeds �k,�−k and �S , respectively. The Abel–Jacobi
solutions are linear combinations of these angle velocities.

(iii) Inversion. The final form of solution is obtained through two substeps:

Abel–Jacobi variables
(a)−→ elliptic variables

(b)−→ potential variables.

The substep (a) is guaranteed by the Jacobi inversion theorem and calculated through the trace
formulae. The substep (b) is sometimes rather troublesome to get satisfied results. Tedious
calculations are concerned to discuss the nature of constants, which appeared in the process
of integration.

2. Integrable PDEs associated with KN and nKN

In this section, various integrable partial differential equations associated with the KN and nKN
spectral problems are presented in the zero-curvature forms, which are compatible conditions
of two linear spectral problems (the Lax pair) in the (1+1)-dimensional case, or that of the Lax
triad in the (2+1) case. These will lead to the decomposition into finite-dimensional integrable
systems and integrable symplectic map, as will be shown in the next sections.

(i) The KN hierarchy

The deduction of the Kaup–Newell hierarchy is provided by the fundamental identity for any
smooth function γ : R → R

3 with V = σλ(γ ):

∂xV − [V1, V ] = σλ{(K+ − λ2J +)γ }, (2.1)

σλ =
(

λγ 3 γ 1

γ 2 −λγ 3

)
, K+ =

⎛⎝∂x 0 0
0 ∂x 0
v −u ∂x

⎞⎠ , J + =
⎛⎝1 0 −2u

0 −1 2v

0 0 0

⎞⎠ . (2.2)

The Lenart sequence [20] {gj } are defined recursively by

J +g0 = 0, K+gk = J +gk+1, (k = 1, 2, . . .), (2.3)

g0 =
⎛⎝ u

v

1/2

⎞⎠ , g1 =
⎛⎝ ux − 2u2v

−vx − 2uv2

−uv

⎞⎠ , g2 =
⎛⎝uxx − 6uvux + 6u3v2

vxx + 6uvvx + 6u2v3

−uxv + 6uvx + 3u2v2

⎞⎠ . (2.4)

Obviously V1 = σλ(g0λ). Define Vk = σλ(γk), γk = ∑k−1
j=0 gjλ

2k−2j−1. Then we have a direct
relation to establish the equivalence between the zero-curvature equation and the isospectral
equation

∂τk
V1 − ∂xVk + [V1, Vk] = λσλ

{
(u, v, 0)Tτk

− J +gk

}
.

Proposition 2.1. V1, Vk are the Lax pair for the kth KN equation

∂τk

(
u

v

)
= Xk �

(
(J +gk)

1

(J +gk)2

)
, (2.5)

Proposition 2.2. Let u(x, τ2, τ3), v(x, τ2, τ3) be a compatible solution of

∂τ2

(
u

v

)
= X2 =

(
uxx − 2(u2v)x

−vxx − 2(uv2)x

)
, ∂τ3

(
u

v

)
= X3 =

(
(uxx − 6uvux + 6u3v2)x

(vxx + 6uvvx + 6u2v3)x

)
(2.6)

Then w = uv solves the mKP equation (1.6).
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(ii) The nKN hierarchy

The deduction of the isospectral hierarchy of equation (1.3) is based on another fundamental
identity with V = σ−

λ (γ ):

∂yV − [V−1, V ] = σ̂−
λ {(K− − λ−2J−)γ }, (2.7)

σ−
λ (γ ) =

(
−γ 3λ−2 + sγ 1 + rγ 2 −γ 1λ−1

−γ 2λ−1 γ 3λ−2 − sγ 1 − rγ 2

)
,

σ̂−
λ (ξ) =

(
ξ 3 + sξ 1 + rξ 2 −ξ 1λ−1

−ξ 2λ−1 −ξ 3 − sξ 1 − rξ 2

)
,

K− =
⎛⎝ ∂y 2r2 0

−2s2 ∂y 0
sy + 2rs2 ry − 2r2s 0

⎞⎠ , J− =
⎛⎝−1 0 2r

0 1 −2s

0 0 ∂y

⎞⎠ .

(2.8)

The Lenart sequence {h−k} are defined recursively by

J−h0 = 0, J−h−k−1 = K−h−k, (k = 0, 1, 2, . . .), (2.9)

h0 =
⎛⎝ r

s

1/2

⎞⎠ , h−1 =
⎛⎝−ry

sy

rs

⎞⎠ , h−2 =
⎛⎝ryy − 2r2sy − 2r3s2

syy + 2s2ry − 2r2s3

−r2s2

⎞⎠ ,

h−3 =
⎛⎝ −ryyy + 6rrysy + 6r2s2ry

syyy + 6srysy − 6r2s2sy

rysy + 2rs2ry − 2r2ssy − 2r3s3

⎞⎠ .

(2.10)

Define V−k = σ−
λ (γ−k), where

γ−k � h0λ
−2k+2 + h−1λ

−2k+4 + · · · + h−k+1 +
(
0, 0, h3

−k

)T
λ2.

It is little different that there is an extra term. The corresponding equality reads

∂τ−k
V−1 − ∂yV−k + [V−1, V−k] = σ̂−

λ

{
(r, s, 0)Tτ−k

− (−h1
−k, h

2
−k, 0

)T }
.

Proposition 2.3. V−1, V−k are the Lax pair for the kth nKN equation:

∂τ−k

(
r

s

)
= X−k �

(−h1
−k

h2
−k

)
, (2.11)

Proposition 2.4. Let r, s be a compatible solution of (X−2) and (X−3)(
r

s

)
τ−2

=
(−ryy + 2r2sy + 2r3s2

syy + 2s2ry − 2r2s3

)
,

(
r

s

)
τ−3

=
(

ryyy − 6rrysy − 6r2s2ry

syyy + 6srysy − 6r2s2sy

)
(2.12)

Then w̃ = rs solves the mKP equation (1.7).

Remark. Since X1 = (ux, vx)
T ,X−1 = (ry, sy)

T , the notations x = τ1, y = τ−1 are
reasonable.

Proposition 2.5. Let ∂xr = −u, ∂xs = v. Then ∂yV1 − ∂xV−1 + [V1, V−1] = 0 if and only if{
rxy − 2rsrx + r = 0,

sxy + 2rssx + s = 0.
(2.13)
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Among the integrable equations associated with KN, equation (2.13) has a special position,
since it has KN and nKN as its Lax pair. A compatible solution of (H1) and (H−1) leads to the
finite genus solution in the Abel–Jacobi coordinates (see equation (6.8) below). Nevertheless,
essential difficulties are encountered in the inversion process. An explicit solution in the
potential variables r, s has not been obtained.

(iii) Integrable equations containing discrete variable

We write a(x, n) = an(x), etc for short. Through direct calculations we have

Proposition 2.6. Let u = −1/(an−1bn−1), v = an/bn. Then ∂xU = (EV1)U − UV1 if and
only if

∂xan = an

bn

, ∂xbn = bn

(
an+1

anbn+1bn

− an

an−1bnbn−1

)
. (2.14)

Proposition 2.7. Let r = −1/an−1, s = an. Then ∂yU = (EV−1)U − UV−1 if and only if

∂yan = an

(
an+1

an

+
an

an−1
− bn

)
, ∂ybn = bn

(
an+1

an

− an

an−1

)
. (2.15)

Proposition 2.8. Let (u, v), (r, s) be a compatible solution of equation (2.14)–(2.15). Then
ϕn = ln an solves the (2+1) d-Toda equation (1.1).

Proposition 2.9. Let (u, v), (r, s) be given as in proposition 2.6–2.7. Then ϕn(x, y) =
ln an(x, y), given by the compatible solution of equation (1.2)–(1.4), solves the (2+1) d-Toda
equation (1.1).

3. The Liouville-integrable system (Hk) and (H−k)

(i) The Lax–Moser matrix
The Lax–Moser matrix is calculated by using the fundamental identity (2.1), in a similar way
as in [16–19]. To omit the lengthy argument, we begin with direct verification of the results.
Let A = diag(α1, . . . , αN), whose diagonal elements are distinct non-zero constants. Denote

〈ξ, η〉 =
N∑

j=1

ξjηj , Qλ(ξ, η) = 〈(λ2 − A2)−1ξ, η〉.

Define the Lax–Moser matrix:

Vλ =
(

1/2 + Qλ(A
2p, q) −λQλ(Ap, p)

λQλ(Aq, q) −1/2 − Qλ(A
2p, q)

)
. (3.1)

Consider the canonical equations with the Hamiltonian Fλ = det Vλ

Fλ = −[1/2 + Qλ(A
2p, q)]2 + λ2Qλ(Ap, p)Qλ(Aq, q), (3.2)

d

dtλ

(
pj

qj

)
=

(−∂Fλ/∂qj

∂Fλ/∂pj

)
= W(λ, αj )

(
pj

qj

)
, (3.3)

W(λ,µ) = 2µ

λ2 − µ2

(
µV 11

λ λV 12
λ

λV 21
λ −µV 11

λ

)
. (3.4)

Through direct calculations we obtain the Lax equation along the Fλ flow satisfied by Vµ:

dVµ

dtλ
= [W(λ,µ), Vµ]. (3.5)

5
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As a general fact for the Lax equation, Fµ = det Vµ is constant along the flow. Thus we obtain
Moser’s formula:

(Fµ, Fλ) = 0, ∀µ, λ ∈ C, (3.6)

since the derivative of a smooth function along the Hamiltonian flow is equal to its Poisson
bracket with the Hamiltonian. It turns out that a more essential role is played by the square
root Hλ, defined as

−4Fλ = (−4Hλ)
2. (3.7)

(ii) The integrals

Integrals are determined through power series expansions

Fλ = −1

4
+

∞∑
j=1

Fjλ
−2j , Hλ = −1

4
+

∞∑
j=1

Hjλ
−2j ,

Fλ =
∞∑

k=0

F−kλ
2k, Hλ =

∞∑
k=0

H−kλ
2k,

for |λ| > max{|α1|, . . . , |αN |}, |λ| < min{|α1|, . . . , |αN |}, respectively. The explicit formula
for F±k and recursive formula for H±k are as follows:

Fk = −〈A2kp, q〉 −
∑

i+j=k;i,j�1

〈A2ip, q〉〈A2jp, q〉 −
∑

i+j=k+1;i,j�1

〈A2i−1p, p〉〈A2j−1q, q〉;

F−k = −〈A−2kp, q〉 −
∑

i+j=k;i,j�0

〈A−2ip, q〉〈A−2jp, q〉

+
∑

i+j=k−1;i,j�0

〈A−2i−1p, p〉〈A−2j−1q, q〉;

Hk = 1

2
Fk + 2

∑
i+j=k;i,j�1

HiHj ;

H−k = − F−k

8H0
− 1

2H0

∑
i+j=k;i,j�1

H−iH−j .

with the first few members:

F1 = −〈A2p, q〉 + 〈Ap,p〉〈Aq, q〉,
F0 = −(2〈p, q〉 − 1)2,

F1 = −
(

〈p, q〉 − 1

2

)
〈A−2p, q〉 + 〈A−1p, p〉〈A−1q, q〉;

H1 = −1

2
〈A2p, q〉 +

1

2
〈Ap,p〉〈Aq, q〉,

H0 = 1

4
(2〈p, q〉 − 1),

H−1 = −1

2
〈A−2p, q〉 − 1

2

〈A−1p, p〉〈A−1q, q〉(〈p, q〉 − 1
2

)2 .

(3.8)

By the Leibniz rule of the Poisson bracket, from equations (3.6) and (3.7) and their
expansions we have

(Fλ, Fµ) = (Fλ,Hµ) = (Hλ,Hµ) = 0, ∀λ,µ ∈ C;
(Fi, Fj ) = (Fi,Hj ) = (Hi,Hj ) = 0, ∀i, j ∈ Z

(3.9)

6
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The Hamiltonian system (R2N, dp ∧ dq, Fk) with the variable tk is denoted by (Fk) for short.
Similarly we have (F−k), (Hk), (H−k), (Hλ) with variables t−k, τk, τ−k, τλ, respectively. The
Leibniz rule of the Poisson bracket gives rise to

d

dtλ
= −8Hλ

d

dτλ

. (3.10)

The canonical equation of the Hamiltonian system (H1), (H−1) are put in the form

∂x

(
p

q

)
=

(−∂H1/∂q

∂H1/∂p

)
=

(
A2/2 uA

vA −A2/2

)(
p

q

)
, (3.11)

(u, v) = f +(p, q) = (−〈Ap,p〉, 〈Aq, q〉), (3.12)

∂y

(
p

q

)
=

(−∂H−1/∂q

∂H−1/∂p

)
=

(−A−2/2 + rs −rA−1

−sA−1 A−2/2 − rs

)(
p

q

)
, (3.13)

(r, s) = f −(p, q) = 1

2〈p, q〉 − 1
(−〈A−1p, p〉, 〈A−1q, q〉), (3.14)

respectively. The j th component of equation (3.11) reads

∂x

(
pj

qj

)
=

(
α2

j /2 uαj

vαj −α2
j

/
2

) (
pj

qj

)
.

It is exactly the KN equation (1.2) with λ = αj , χ = (pj , qj )
T and u, v expressed as

in equation (3.12). Similar relation exists between (H−1), given by equation (3.13) and
nKN (1.3).

(iii) The algebraic curve

By equation (3.2), Fλ is a rational function of ζ = λ2 with single poles at ζ = α2
j , 1 � j � N .

Thus

Fλ = − b(ζ )

4α(ζ )
= −

∏N
1

(
ζ − b2

j

)
4
∏N

1

(
ζ − α2

j

) = − R(ζ )

4α2(ζ )
. (3.15)

Define an algebraic curve,

�: ξ 2 = R(ζ ) �
2N∏
k=1

(
ζ − λ2

k

)
, (3.16)

where λj = αj , λN+j = bj , 1 � j � N,R(ζ ) = α(ζ )b(ζ ). � has genus g = N − 1.
Corresponding to each ζ ∈ C, there are two points on �: P(ζ ) and P −(ζ ), with ξ equals
to ±√

R(ζ ), respectively. In particular, we have 0l : ζ = 0, ξ = (−1)l
√

R(0). The affine
equation of � near ∞ is

η2 = R∗(z) �
2N∏
k=1

(
1 − λ2

kz
)
, (3.17)

with z = ζ−1, η = ζ−Nξ . Similarly we have two infinities ∞l : z = 0, η = (−1)l . The
functions Fλ,Hλ and equation (3.10) are represented as

−4Fλ = R(ζ )

α2(ζ )
, −4Hλ =

√
R(ζ )

α(ζ )
,

d

dtλ
=

√
R(ζ )

2α(ζ )

d

dτλ

. (3.18)

Let P0 ∈ � be fixed. Introduce the quasi-Abel–Jacobi variables (i = 1, . . . , g)

φ̃i =
g∑

k=1

∫ P(µ2
k)

P0

ω̃i , ω̃i = ζ g−i

2
√

R(ζ )
dζ, (3.19)

7
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where ω̃1, . . . , ω̃g constitute the basis of holomorphic differentials of �. The elliptic variables
µ2

k, ν
2
k are defined as the zeros of V 12

λ , V 21
λ , given by the components of equation (3.1), with

the factorizations

V 12
λ = −λ〈Ap,p〉 m̃(ζ )

α(ζ )
, m̃(ζ ) =

g∏
j=1

(
ζ − µ2

j

);
V 21

λ = λ〈Aq, q〉 ñ(ζ )

α(ζ )
, ñ(ζ ) =

g∏
j=1

(
ζ − ν2

j

)
.

(3.20)

Due to lemma (4.3) below, we need only deal with
{
µ2

k

}
. Put λ = µk

(
ζ = µ2

k

)
into the

equation

R(ζ )

4α2(ζ )
= −Fλ = (

V 11
λ

)2
+ V 12

λ V 21
λ .

We get

V 11
λ

∣∣
λ=µk

=
√

R
(
µ2

k

)
2α

(
µ2

k

) .

Consider the component equation for V 12
µ in equation (3.5)

dV 12
µ

dtλ
= 2

(
W 11

λµV 12
µ − W 12

λµV 11
µ

) = 4µ

λ2 − µ2

(
µV 11

λ V 12
µ − λV 12

λ V 11
µ

)
.

After substituting Vµ, Vλ by equation (3.20), and putting µ = µk , we obtain

1

2
√

R
(
µ2

k

) d
(
µ2

k

)
dtλ

= ζ

α(ζ )

m̃(ζ )(
ζ − µ2

k

)
m̃′(µ2

k

) . (3.21)

Using the interpolation formula for the polynomial m̃(ζ ), we have (i = 1, . . . , g)

g∑
k=1

(
µ2

k

)g−i

2
√

R
(
µ2

k

) d
(
µ2

k

)
dtλ

= ζ

α(ζ )

g∑
k=1

(
µ2

k

)g−i
m̃(ζ )

(ζ − µ2
k)m̃

′(µ2
k

) = ζ g−i+1

α(ζ )
.

By equation (3.19), finally we get

dφ̃i

dtλ
= (φ̃i , Fλ) = ζ g−i+1

α(ζ )
, (i = 1, . . . , g). (3.22)

Proposition 3.1. The quasi-Abel–Jacobi variables straighten out the Fk flow

dφ̃i

dtk
= (φ̃i , Fk) = Ak−i , (3.23)

(1 � i � g, k = 1, 2, . . .), where Aj,A−j are determined by (A0 = 1):

N∏
j=1

1

1 − α2
j ζ

−1
=

∞∑
j=0

Ajζ
−j ; A−j = 0, (j = 1, 2, . . .). (3.24)

Lemma 3.2. F0, F1, . . . , FN−1 are functionally independent in the open set {H0 �= 0}.
8
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Proof. Suppose
∑N−1

0 ckdFk = 0. According to the relation between the Poisson bracket and
the symplectic structure ω2 = dp ∧ dq [21], we have

0 = ω2

(
I

g∑
0

ckdFk, Idφ̃i

)
=

g∑
0

ckω
2(IdFk, Idφ̃i)

=
g∑
0

ck(φ̃i , Fk) =
g∑
1

ck(φ̃i , Fk),

where (φ̃i , F0) = A−j = 0 is used. The coefficient matrix in the right-hand side is non-
degenerate since it is triangular with diagonal element 1 by equation (3.23)–(3.24). Thus
c1 = · · · = cN−1 = 0. We have c0dF0 = 0, which implies c0 = 0. �

Proposition 3.3. Each of the Hamiltonian systems (Fλ), (Hλ), (Fk), (F−k), (Hk), (H−k) is
completely integrable in the Liouville sense [21].

(iv) Straightening out of the Hk- and H−k-flow

Let a1, . . . , ag, b1, . . . , bg be the normalized basis of homological cycles of �. Put
ω̃ = (ω̃1, . . . , ω̃g)

T and transform it into

ω = Cω̃ = (C1ζ
g−1 + C2ζ

g−2 + · · · + Cg)
dζ

2
√

R(ζ )
. (3.25)

Here Cj is the column vector C = (Ajk)
−1
g×g , where Ajk is the integral of ω̃j along ak . The

periodic vector δk, Bk are the integrals of ω along ak, bk , respectively. They span the lattice T
in C

g . Let B be the matrix with the column vector Bk . It is used to construct the theta function
θ(ζ, B) of the curve � [22, 23]. The Abel map A(P ) is defined as the integral of ω from P0 to
P, with linear extension to the divisor group Div(�). The Abel–Jacobi variable is defined as

φ = Cφ̃ = A

⎛⎝ g∑
j=1

P
(
µ2

j

)⎞⎠ . (3.26)

Change d/dtλ into d/dτλ by equation (3.18). Multiplied by C from the left-hand side,
equation (3.22) becomes

dφ

dτλ

= (φ,Hλ) = 1

2
√

R(ζ )
(C1ζ

g + C2ζ
g−1 + · · · + Cgζ ). (3.27)

Expand in the powers of z = ζ−1, ζ , respectively. We have

Proposition 3.4. The Abel–Jacobi variables φ straighten out the Hk- and H−k-flow

dφ

dτk

= (φ,Hk) = �k,
dφ

dτ−k

= (φ,H−k) = �−k,
dφ

dτ0
= 0, (3.28)

(k = 1, 2, . . .), where �k,�−k are determined by the expansions of the normalized basis ω of
holomorphic differentials in the neighborhood of ∞l , 0l , respectively (l = 1, 2), (λ2 = ζ =
z−1):

ω = (−1)l−1
∞∑

k=1

�kz
k−1 dz, �1 = 1

2
C1, (3.29)

ω = (−1)l
∞∑

k=1

�−kζ
k−1 dζ, �−1 = 1

2
√

R(0)
Cg. (3.30)

9
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4. The Liouville-integrable symplectic map S

Define a map S : R
2N −→ R

2N by(
p

q

)
= E

(
p

q

)
= S(p, q) =

( −a−1q

ap − bAq − A−1q

)
(a,b)=fs (p,q)

, (4.1)

(a, b) = fs(p, q) =
( 〈A−1q, q〉

2〈p, q〉 − 1
,

〈A−1q, q〉
(2〈p, q〉 − 1)〈Aq, q〉

)
. (4.2)

The j th component of equation (4.1) reads

E

(
pj

qj

)
=

(
0 −a−1

a −bαj − α−1
j

) (
pj

qj

)
,

which is equation (1.4) with λ = αj , χ = (pj , qj )
T and a, b expressed as in the constraint

(4.2). Through direct calculations we see that S preserves dp∧dq, thus is symplectic [24–26].
Besides, the matrix U and the Lax–Moser matrix Vλ commute

(EVλ)U − UVλ = 0, (4.3)

where E is the shift operator of the discrete flow Sn generated by S. Since det U = 1,
immediately we have E det Vλ = Vλ, i.e. EFλ = Fλ. Thus Fλ, and hence Hλ, Fk and Hk , are
integrals of S.

Proposition 4.1. The map S is symplectic and completely integrable in Liouville sense.

The straightening out of the discrete S-flow in the Jacobi variety J (�) is obtained similarly,
as in [17–19]. Consider the fundamental solution matrix M(k) of equation (1.4)

M(k + 1) = UkM(k), M(0) =
(

1 0
0 1

)
; M(K) =

(
p(1)(k, λ) p(2)(k, λ)

q(1)(k, λ) q(2)(k, λ)

)
.

(4.4)

Evidently M(k) = Uk−1Uk−2 · · · U0, det M(k) = 1. Under the constraint (4.2), we have

Vλ(k)M(k) = M(k)Vλ(0). (4.5)

By induction we obtain

M(k) = λ−k

((
M̃11

k + O(λ2)
)
λ2

(
M̃12

k + O(λ2)
)
λ(

M̃21
k + O(λ2)

)
λ M̃22

k + O(λ2)

)
, (λ → 0), (4.6)

M(k) = λk

((
M11

k + O(λ−2)
)
λ−2

(
M12

k + O(λ−2)
)
λ−1(

M21
k + O(λ−2)

)
λ−1 M22

k + O(λ−2)

)
, (λ → ∞). (4.7)

λk−2p(1)(k, λ), λk−1p(2)(k, λ), λk−1q(1)(k, λ)andλkq(2)(k, λ) are polynomials of ζ = λ2 with
degrees k − 2, k − 1, k − 1, k, respectively. By equation (4.3), the solution space Eλ of
Eχ = Uχ is invariant under the action of Vλ. It has a eigenvalue ρ± = ±√−Fλ with the
associated eigenvector in Eλ as

χ±(k) =
(

p±(k, λ)

q±(k, λ)

)
=

(
p(1)(k, λ) + d±p(2)(k, λ)

q(1)(k, λ) + d±q(2)(k, λ)

)
. (4.8)

Let k = 0 in [Vλ(k) − ρ±]χ±(k) = 0. We have

d± = −V 11
λ (0) − ρ±

V 12
λ (0)

= V 21
λ (0)

V 11
λ (0) + ρ± . (4.9)

10
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By using equations (4.3) and (4.4), in a similar way as in [17–19], we obtain the discrete
version of Dubrovin–Novikov formula

p+(k, λ)p−(k, λ) =
g∏

i=1

ζ − µ2
i (k)

ζ − µ2
i (0)

. (4.10)

Resorting to these results and equations (4.6)–(4.7), we have the asymptotic behaviors

λkp−(k, λ) = 4H0M̃
12
k

〈A−1p, p〉|k=0
+ O(λ2), λkp+(k, λ) =

( 〈A−1p, p〉|k
4H0M̃

12
k

+ O(λ2)

)
λ2k,

(4.11)

λkp−(k, λ) =
(

M12
k

〈Ap,p〉|k=0
+ O(λ−2)

)
λ2k, λkp+(k, λ) = 〈Ap,p〉|k=0

M12
k

+ O(λ−2),

(4.12)

for λ → 0, λ → ∞, respectively.

Proposition 4.2. The Abel–Jacobi variable φ straightens out the symplectic flow Sk

φ(k) ≡ k�S + φ(0), (mod T ); (4.13)

�s ≡
∫ ∞1

02

ω ≡
∫ 01

∞2

ω, (mod T ). (4.14)

Proof. λkp+(k, λ), λkp−(k, λ) are polynomials of ζ, ζ−1, which are values of a well-defined
meromorphic function ψ(k, P ) in the two sheets of �, respectively. It has simple zeros and
simple poles at P

(
µ2

i (k)
)
, P

(
µ2

i (0)
)
, respectively, a kth order pole at ∞1 and a kth order zero

at 02. By a method due to Toda [17–19, 27], we get

g∑
i=1

∫ P(µ2
i (k))

P (µ2
i (0))

ω + k

∫ 02

∞1

ω ≡ 0, (mod T ).

This implies equation (4.13). By using the map τ : P = (ζ, ξ) → P − = (ζ,−ξ) with the
property τ 2 = id|� and τ ∗ω = −ω, we obtain

�s =
∫ ∞1

02

ω =
∫ ∞1

02

τ 2ω =
∫ ∞2

01

τ ∗ω = −
∫ ∞2

01

ω, (mod T ).

�

Lemma 4.3.

Em̃(ζ ) = ñ(ζ ) and E

g∑
i=1

µ2k
i =

g∑
i=1

ν2k
i , k ∈ Z.

Proof. By equation (4.1), p = −a−1q. The proof is completed by substituting the following
expressions into equation (3.20)

Qλ(Ap, p) = a−2Qλ(Aq, q), 〈Ap,p〉 = a−2〈Aq, q〉. �

11
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5. Solution of the mKP equation (1.6)

(i) The Abel–Jacobi solutions
Let (u, v) = f +(p, q) and (p, q) be solution of (H1). Consider

Gλ = (−λQλ(Ap, p), λQλ(Aq, q), λ−1[1/2 + Qλ(A
2p, q)])T . (5.1)

By equations (2.1), (2.2) and (3.1), we have Vλ = σλ(Gλ) and (K+ − λ2J +)Gλ = 0. In the
same way as in [16], we obtain

∂tλ(u, v, 1/2)T = 2λJ +Gλ; (5.2)

λGλ = −4Hλgλ. (5.3)

After changing d/dtλ into d/dτλ by equation (3.10), we get

d

dτλ

(
u

v

)
=

(
(J +gλ)

1

(J +gλ)2

)
=

∞∑
k=1

Xkλ
−2k.

Proposition 5.1. Let (p(x, τk), q(x, τk)) be compatible solution of (H1), (Hk). Then
(u, v) = f +(p, q) solves the KN equation (2.5).

Proposition 5.2. Let (p(x, τ2, τ3), q(x, τ2, τ3)) be compatible solution of (H1), (H2, (H3).
Then the mKP equation (1.6) has a special solution

w(x, τ2, τ3) = uv = −〈Ap,p〉〈Aq, q〉. (5.4)

By equation (3.28), we have the solutions expressed in the Abel–Jacobi variables

KN(2.5) : φ = x�1 + τk�k + φ0, (5.5)

equation (2.14) : φ = x�1 + n�S + φ0, (5.6)

mKP(1.6) : φ = x�1 + τ2�2 + τ3�3 + φ0. (5.7)

(ii) Trace formulas

According to Riemann’s theorem, by equation (3.26), there exists a constant vector K
such that θ(A(P ) − φ − K) has simple zeros at P

(
µ2

j

)
, 1 � j � g. By equation (3.29), in

the local coordinate z = ζ−1 near P = ∞l , we obtain

A(P (ζ ))=
∫ P(ζ )

P0

ω = (−1)l−1
∞∑

k=1

1

k
�kz

k − η∞l
, η∞l

=
∫ P0

∞l

ω, (5.8)

In quite a similar way as in [16] we have
g∑

i=1

µ2k
i = Ik(�) −

2∑
l=1

Res∞l

ζ kd ln θ(A(P ) − φ − K), Ik(�) =
g∑

i=1

∫
ai

ζ kωi,

g∑
i=1

µ2
i = I1(�) + �i

1∂i ln
θ1

θ2
,

g∑
i=1

µ4
i = I2(�) + �i

2∂i ln
θ1

θ2
− �i

1�
j

1∂
2
ij ln θ1θ2,

(5.9)

where θl = θ(φ + K + η∞l
) and ∂i designates the partial derivative with respect to the ith

argument of the theta function. Let φ be the Abel–Jacobi solution: φ = φ0 +
∑

τk�k . Then
�i

k∂i = ∂τk
. With the zeros λ2

i of R(ζ ) defined as in equation (3.16), consider

Sk = 1

2

2N∑
i=1

λ2k
i −

g∑
i=1

µ2k
i , S̃k = 1

2

2N∑
i=1

λ2k
i −

g∑
i=1

ν2k
i . (5.10)

12
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Proposition 5.3. Let Dk = ∑2N
i=1

(
λ2k

i

/
2
) − Ik(�). Then

S1 = −∂τ1 ln
θ1

θ2
+ D1, S2 = −∂τ2 ln

θ1

θ2
+ ∂τ1 ln θ1θ2 + D2,

S̃1 = −∂τ1 ln
θ̃1

θ̃2
+ D1, S̃2 = −∂τ2 ln

θ̃1

θ̃2
+ ∂τ1 ln θ̃1θ̃2 + D2,

(5.11)

where θl = θ
(∑

τk�k + φ0 + K + η∞l

)
, θ̃l = θ

(∑
τk�k + φ0 + K + η∞l

+ �S

)
.

Proof. From equation (5.9) we have the first two formulae. According to Lemma 4.3, the
latter two formulae are obtained by exerting the operator E upon the former ones. �

(iii) The Jacobi inversion

The direct relations between (u, v) = f +(p, q) and the elliptic coordinates are given by

+
1

u

du

dτλ

+ 2g3
λ =

∏g

i=1

(
1 − µ2

i z
)√∏2N

i=1

(
1 − λ2

i z
) , −1

v

dv

dτλ

+ 2g3
λ =

∏g

i=1

(
1 − ν2

i z
)√∏2N

i=1

(
1 − λ2

i z
) . (5.12)

They are proved by substituting equation (5.1) into (5.2), and taking into account of
equation (5.3) and (3.20). Through power series expansions we get

kTk = Sk +
∑

i+j=k;i,j�1

TiSj , kT̃k = S̃k +
∑

i+j=k;i,j�1

T̃i S̃j , (5.13)

where Tk = ∂τk
ln u + 2g3

k , T̃k = −∂τk
ln v + 2g3

k . In particular,

S1 = T1, S2 = 2T2 − T 2
1 ;

S̃1 = T̃1, S̃2 = 2T̃2 − T̃ 2
1 .

(5.14)

Lemma 5.4. Let (u, v) = f +(p, q). Then

∂τλ
g3

µ = ∂τµ
g3

λ, ∀λ,µ ∈ C; (5.15)

∂τi
g3

j = ∂τj
g3

i , ∀i, j = 1, 2, . . . . (5.16)

Proof. From equation (3.5) we have

dV 11
λ

dtλ
= 2λµ

λ2 − µ2

∣∣∣∣V 12
λ V 12

µ

V 21
λ V 21

µ

∣∣∣∣ .
By equations (5.3), (5.1), (3.1) and (3.18), this equation is transformed into

dg3
µ

dτλ

= 1

λ2 − µ2

∣∣∣∣g1
λ g1

µ

g2
λ g2

µ

∣∣∣∣ .
The symmetry with respect to λ,µ proves equation (5.15). The power series expansion gives
rise to equation (5.16). �

Lemma 5.5.

+uvx + u2v2 = ∂2
x ln θ1 + 1

2 (D2 − N ′
2),

−uxv + u2v2 = ∂2
x ln θ̃2 + 1

2 (D2 − N ′′
2 ),

(uv)x = ∂2
x ln(θ1/θ̃2) + 1

2 (N ′′
2 − N ′

2).

(5.17)

13
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Proof. The first two members of equation (5.14) read

∂x ln u + 2g3
1 = −∂x ln(θ1/θ2) + D1; (5.18)

2∂τ2 ln u + 4g3
1 − T 2

1 = −(
∂τ2 + ∂2

x

)
ln(θ1/θ2) + 2∂2

x ln θ2 + D2. (5.19)

Differentiate equation (5.18) with respect to τ2

∂τ2∂x ln u + 2∂τ2g
3
1 = −∂τ2∂x ln(θ1/θ2)

By equation (5.16), ∂τ2g
3
1 = ∂xg

3
2, since x = τ1. Thus we have

∂τ2 ln u + 2g3
2 = −∂τ2 ln(θ1/θ2) + N ′

2, (5.20)

where N ′
2 is independent of x. By using this equation and equation (5.18) to cancel the extra

terms in equation (5.19), we obtain the first formula of equation (5.17). Similarly, from the
latter two members in equation (5.14)

−∂x ln v + 2g3
1 = −∂x ln(θ̃1/θ̃2) + D1,

−2∂τ2 ln v + 4g3
1 − T̃ 2

1 = −(
∂τ2 − ∂2

x

)
ln(θ̃1/θ̃2) + 2∂2

x ln θ̃2 + D2,

we have

−∂τ2 ln v + 2g3
2 = −∂τ2 ln(θ̃1/θ̃2) + N ′′

2 ,

where N ′′
2 is independent of x. By canceling the extra terms we have the second formula in

equation (5.17). The third one is a corollary of the first two ones. �

Proposition 5.6. The mKP equation (1.6) has a finite genus solution:

w(x, τ2, τ3) = ∂x ln
θ(x�1 + τ2�2 + τ3�3 + δ∞1)

θ
(
x�1 + τ2�2 + τ3�3 + δ∞2 + �s

) + N2x + D+, (5.21)

where δ∞l
= φ0 + K + η∞l

; N2 = (N ′′
2 − N ′

2)/2 and D+ are independent of x.

6. Solution of the (2+1) d-Toda equation

(i) Abel–Jacobi solutions containing H−k-flow

Let (r, s) = f−(p, q) and (p, q) be a solution of (H−1). A straightforward calculation
confirms that the equation (K− − λ−2J−)G̃λ = 0 has a solution G̃λ:

G̃1
λ = Qλ(Ap, p), G̃2

λ = −Qλ(Aq, q),

G̃3
λ = −[

1
2 + Qλ(A

2p, q)
]

+ λ2[sQλ(Ap, p) − rQλ(Aq, q)].
(6.1)

Similar calculations give rise to

d

dtλ

(
r

s

)
= 2

(
Qλ(Ap, p)

Qλ(Aq, q)

)
,

d

dτ−k

(
r

s

)
= X−k|(r,s)=f −(p,q) (6.2)

Proposition 6.1. Let p(y, τ−k), q(y, τ−k) be a compatible solution of (H−1), (H−k). Then the
nKN equation (2.11) has a solution: (r, s) = f −(p, q).

Proposition 6.2. Let p(y, τ−2, τ−3), q(y, τ−2, τ−3) be a compatible solution of
(H−1), (H−2)and(H−3). Then the mKP equation (1.7) has a solution

w̃ = rs = −〈A−1p, p〉〈A−1q, q〉
(2〈p, q〉 − 1)2

. (6.3)

14
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Immediately we have the Abel–Jacobi solutions for a series of integrable equations

nKN (2.11): φ = y�−1 + τ−k�−k + φ0; (6.4)

mKP (1.7): φ = y�−1 + τ−2�−2 + τ−3�−3 + φ0; (6.5)

(2 + 1) dToda (1.1): φ = x�1 + y�−1 + n�S + φ0; (6.6)

equation (2.15): φ = y�−1 + n�S + φ0; (6.7)

equation (2.13) : φ = x�1 + y�−1 + φ0. (6.8)

(ii) Trace formula for negative powers

By equation (3.30), we have the expansion near P = 0l

A(P (ζ )) =
∫ P(ζ )

P0

ω = (−1)l
∞∑

k=1

1

k
�−kζ

k − η0l
, η0l

=
∫ P0

0l

ω. (6.9)

Similar considerations yield

g∑
i=1

µ−2k
i = I−k(�) −

2∑
l=1

Res
0l

ζ−kd ln θ(A(P ) − φ − K), I−k(�) =
g∑

i=1

∫
ai

ζ−kωi, (6.10)

g∑
i=1

µ−2
i = I−1(�) − �i

−1∂i ln
θ0

1

θ0
2

;
g∑

i=1

µ−4
i = I−2(�) − �i

−2∂i ln
θ0

1

θ0
2

− �i
−1�

j

−1∂
2
ij ln θ0

1 θ0
2 ;

g∑
i=1

µ−6
i = I−3(�) −

(
�i

−3∂i +
1

2
�i

−1�
j

−1�
k
−1∂

3
ijk

)
ln

θ0
1

θ0
2

− 3

2
�i

−2�
j

−1∂
2
ij ln θ0

1 θ0
2 .

(6.11)

where θ0
l = θ(φ+K +η0l

). For the Abel–Jacobi solution φ = φ0 +
∑

τk�k +
∑

τ−k�−k +n�S ,
we have �i

−k∂i = ∂τ−k
. Thus

g∑
i=1

µ−2
i = I−1(�) − ∂y ln

θ0
1

θ0
2

;
g∑

i=1

µ−4
i = I−2(�) − ∂τ−2 ln

θ0
1

θ0
2

− ∂2
y ln θ0

1 θ0
2 ;

g∑
i=1

µ−6
i = I−3(�) −

(
∂τ−3 +

1

2
∂3
y

)
ln

θ0
1

θ0
2

− 3

2
∂τ−2∂y ln θ0

1 θ0
2 .

(6.12)

(iii) Inversion in the negative case

Proposition 6.3. Let (r, s) = f −(p, q). Then

−1

r

dr

dτλ

=
∏g

i=1

(
1 − µ−2

i ζ
)√∏2N

i=1

(
1 − λ−2

i ζ
) ,

+
1

s

ds

dτλ

=
∏g

i=1

(
1 − ν−2

i ζ
)√∏2N

i=1

(
1 − λ−2

i ζ
) .

(6.13)
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Proof. By equation (3.3), the derivative of (r, s) = f −(p, q) with respect to tλ is expressed as

dr

dtλ
= 2Qλ(Ap, p),

ds

dtλ
= 2Qλ(Aq, q).

It is transformed into equation (6.13) by taking into account of the following four points:
(a) the definition of f − in equation (3.14); (b) the expression of H0 in equation (3.8);
(c) the relation given in equation (3.18) and (d) the definition of the elliptic variables given by
equation (3.20). �

Expand equation (6.13) as 1 +
∑∞

k=1 T−kζ
k , where T−k = −rτ−k

/r . Consider its logarithm

ln

(
1 +

∞∑
k=1

T−kζ
k

)
=

g∑
i=1

ln
(
1 − µ−2

i ζ
) − 1

2

2N∑
i=1

ln
(
1 − λ−2

i ζ
)
.

Differentiating with respect to ζ and comparing the coefficients, we obtain the recursive
formula

kT−k = S−k +
∑

i+j=k;i,j�1

T−iS−j , S−k � 1

2

2N∑
i=1

λ−2k
i −

g∑
i=1

µ−2k
i ; (6.14)

S−1 = T−1, S−2 = 2T−2 − (T−1)
2, S−3 = 3T−3 − 3T−2T−1 + (T−1)

3. (6.15)

Substituting the trace formula in them, we have

Proposition 6.4.

D−1 + ∂y ln
θ0

1

θ0
2

= − ry

r
;

D−2 + ∂τ−2 ln
θ0

1

θ0
2

+ ∂2
y ln θ0

1 θ0
2 = −2

rτ−2

r
− r2

y

r2
;

D−3 +

(
∂τ−3 +

1

2
∂3
y

)
ln

θ0
1

θ0
2

+
3

2
∂τ−2∂y ln θ0

1 θ0
2 = −3

rτ−3

r
− 3

rτ−2ry

r2
− r3

y

r3
,

(6.16)

where D−k �
∑2N

i=1

(
λ−2k

i

/
2
) − I−k(�), θ0

l = θ
(
φ + K + η0l

)
, η0l

�
∫ P0

0l
ω, l = 1, 2.

Proposition 6.5. Let θ̃l = θ(φ + K + η0l
+ �S), (l = 1, 2). Then

D−1 + ∂y ln
θ̃0

1

θ̃0
2

= sy

s
;

D−2 + ∂τ−2 ln
θ̃0

1

θ̃0
2

+ ∂2
y ln θ̃0

1 θ̃0
2 = 2

sτ−2

s
− s2

y

s2
;

D−3 +

(
∂τ−3 +

1

2
∂3
y

)
ln

θ̃0
1

θ̃0
2

+
3

2
∂τ−2∂y ln θ̃0

1 θ̃0
2 = 3

sτ−3

s
− 3

sτ−2sy

s2
+

s3
y

s3
.

(6.17)

Proposition 6.6. The (2+1) d-Toda equation (1.1) has a finite genus solution:

ϕn(x, y) = ln
θ
(
x�1 + y�−1 + n�S + δ02

)
θ
(
x�1 + (n + 1)�S + δ∞2

)
θ
(
x�1 + y�−1 + (n + 1)�S + δ∞2

)
θ
(
x�1 + n�S + δ02

) + D−1y + ϕn(x, 0),

(6.18)

where δ02 = φ0 + K + η02 , δ∞2 = φ0 + K + η∞2 . D−1 is independent of x, y and n.
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Proof. By the notations in lemma (2.7)–(2.8), we have ϕn = ln an = ln s. From equation
(6.17) we get

∂yϕn = ∂y ln
(
θ̃0

1

/
θ̃0

2

)
+ D−1,

ϕn(x, y) = ln
(
θ̃0

1

/
θ̃0

2

) − ln
(
θ̃0

1

/
θ̃0

2

)∣∣
y=0 + D−1y + ϕn(x, 0),

with the following expressions, where η01 + �S = η∞2 by equation (4.14) is used:

θ̃0
1 = θ

(
x�1 + y�−1 + n�S + φ0 + K + η01 + �S

)
= θ

(
x�1 + y�−1 + n�S + δ∞2

)
,

θ̃0
2 = θ

(
x�1 + y�−1 + n�S + φ0 + K + η02 + �S

)
= θ

(
x�1 + y�−1 + (n + 1)�S + δ02

)
. �

7. Solution of the nKN equation and mKP (1.7)

From the first members of equation (6.16)–(6.17) we obtain

− ln r = ln
(
θ0

1

/
θ0

2

)
+ D−1y + c′, (7.1)

+ ln s = ln
(
θ̃0

1

/
θ̃0

2

)
+ D−1y + c′′, (7.2)

−∂τ−k
ln r = ∂τ−k

ln
(
θ0

1 /θ0
2

)
+ D−1y + N ′

−k, (7.3)

+∂τ−k
ln s = ∂τ−k

ln
(
θ̃0

1

/
θ̃0

2

)
+ D−1y + N ′′

−k, (7.4)

where c′, c′′, N ′
−k, N

′′
−k are independent of the argument y.

Lemma 7.1.

−rsy − r2s2 = ∂2
y ln θ0

1 + (D−2 − N ′
−2)/2, (7.5)

+ rys − r2s2 = ∂2
y ln θ̃0

2 + (D−2 − N ′′
−2)/2, (7.6)

(rs)y = ∂2
y ln

(
θ̃0

2

/
θ0

1

)
+ (N ′

−2 − N ′′
−2)/2. (7.7)

Proof. By equation (6.16) and (7.3) we have

−2∂τ−2 ln r − r2
y

r2
= (

∂τ−2 − ∂2
y

)
ln

θ0
1

θ0
2

+ 2∂2
y ln θ0

1 + D−2,

−(
∂τ−2 − ∂2

y

)
ln r = (

∂τ−2 − ∂2
y

)
ln

θ0
1

θ0
2

− N ′
−2

By canceling the first terms in the right-hand side, and using equation (2.12) to calculate
∂r/∂τ−2, we obtain equation (7.5). A similar calculation for the equations of s leads to the
proof of equation (7.6). The third equality is a corollary of the first two ones.

A little more complicated calculation in the case k = 3 gives rise to �

Lemma 7.2.

−rsyy + rysy − 2r2ssy = ∂τ−2∂y ln θ0
1 + (D−3 − N ′

−3)/3, (7.8)

−ryys + rysy + 2rs2ry = ∂τ−2∂y ln θ̃0
2 + (D−3 − N ′′

−3)/3, (7.9)
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(rs)τ−2 = ∂τ−2∂y ln
(
θ̃0

2

/
θ0

1

)
+ (N ′

−3 − N ′′
−3)/3. (7.10)

Lemma 7.3. N ′
−2, N

′′
−2 are independent of the argument τ−2.

Proof. Differentiate equation (7.5) and (7.8) with respect to τ−2, y, respectively. Direct
calculations gives

∂τ−2(rsy + r2s2) = rsyyy − ryysy + 2r2ssyy + 4rsrysy + 4r2s2
y = ∂y(rsyy − rysy + 2r2ssy).

Thus

∂τ−2(N
′
−2/2) = ∂y(N

′
−3/3) = 0,

since N ′
−3 is independent of y. This proves the independence of N ′

−2 with respect to τ−2.
From equations (7.5) and (7.8) we have

1
2∂τ−2(N

′
−2 − N ′′

−2) = 1
3∂y(N

′
−3 − N ′′

−3) = 0.

Hence N ′′
−2 is independent of τ−2. �

Proposition 7.4. The nKN equation (1.5) has a finite genus solution:

r(y, τ−2) = r(0, 0)e−D−1y−N ′
−2τ−2

θ
(
y�−1 + τ−2�−2 + δ02

)
θ(δ01)

θ
(
y�−1 + τ−2�−2 + δ01

)
θ
(
δ02

) ,

s(y, τ−2) = s(0, 0)e+D−1y+N ′′
−2τ−2

θ
(
y�−1 + τ−2�−2 + δ01 + �S

)
θ
(
δ02 + �S

)
θ
(
y�−1 + τ−2�−2 + δ02 + �S

)
θ
(
δ01 + �S

) ,

(7.11)

with δ0l
= φ0 + K + η0l

, l = 1, 2.D−1, N
′
−2, N

′′
−2 are independent of y and τ−2.

Proof. By equations (6.17) and (7.3) we have

∂y ln r = −∂y ln
(
θ0

1

/
θ0

2

) − D−1, ∂τ−2 ln r = −∂τ−2 ln
(
θ0

1

/
θ0

2

) − N ′
−2,

Thus (
ln r + ln

(
θ0

1

/
θ0

2

))∣∣(y,τ−2)

(0,0)
= −D−1y − N ′

−2τ−2.

This completes the proof of the first formula. The second one is proved in a similar way. �

Proposition 7.5. The mKP equation (1.7) has a solution

w̃(y, τ−2, τ−3) = ∂y ln
θ
(
y�1 + τ−2�−2 + τ−3�−3 + δ02 + �S

)
θ
(
y�1 + τ−2�−2 + τ−3�−3 + δ01

) + N−2y + D−, (7.12)

where N−2 = (N ′
−2 − N ′′

−2)/2.

Proof. By equation (7.7). �
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